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Abstract. The Hooke-Calogero model of the H2 molecule, a four body system consisting of two protons and
two electrons with harmonic electron-nuclear, Coulombic electron-electron and inverse quadratic nuclear-
nuclear interactions, has been analyzed in–depth. A fully analytical closed–form non-Born-Oppenheimer
solution has been found and based on it the properties of both electron–pair and nuclear–pair densities have
been studied. Nuclei have been found to be strongly correlated in a way that resembles a sort of Wigner
crystallization, for moderate electron–nucleus confinement strengths. Additionally, we have explicitly eval-
uated the Coulomb holes for the electrons. Analysis of these holes reveals that the similarity between the
electron correlation effects of the model as compared to the real Coulombic systems is remarkable.

PACS. 31.25.-v Electron correlation calculations for atoms and molecules – 03.65.Ge Solutions of wave
equations: bound states – 31.25.Eb Electron correlation calculations for atoms and ions: ground state

1 Introduction

The Schrödinger equation for most N -body physical sys-
tems of interest is either non-separable or leads to one-
particle equations which cannot be solved analytically.
This difficulty is quite often circumvented through the
introduction of models for which analytic solutions are
available. Clearly, analytic solutions are quite useful, not
only for the purpose of finding closed-form expressions for
physical variables — such as the energy and its various
components, the one-particle density, etc. which can be
then related to and contrasted with experimental mea-
surements — but also because they provide exact values
against which results obtained from approximate theoret-
ical methods can be calibrated.

The renewed interest in solvable and quasi-solvable
models in several areas of physics is a clear indication
as to their actual or potential usefulness. In this vein,
Johnson [1] has reviewed some solvable models applica-
ble to quantum dots. More recently, Bose and Gupta have
given a comprehensive treatment of different types of solv-
able potentials [2]. Similarly, based on group theoretical
considerations, Tanaka [3] has discussed a systematic pro-
cedure for the generation of solvable and quasi-solvable
models. In the present work, we adopt the Hooke-Calogero
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model to carry out an exact analytic treatment of H2

molecule. In this model, a harmonic potential replaces
the electron-nuclear interaction (Hookean model) and an
inverse square potential substitutes the nuclear-nuclear
one (Calogero model). As we shall show below, although
this model contains simplifications that make the problem
mathematically tractable, it includes, nevertheless, some
of the essential aspects of the real Coulombic H2 molecule.

The introduction of harmonic confining potentials to
replace, at various levels of approximation, the actual
Coulomb interactions between charged particles, such as
electrons and nuclei, or to mimic the effects of confining
fields, etc., has been a long-standing practice. Thus, for
example, when all interactions in an atom are replaced
by harmonic potentials, we have what is generally called
the Moshinsky model [4]. In the Hookean atom (or har-
monium) only the electron-nuclear potentials are replaced
by harmonic ones (the electron-electron potentials remain
Coulombic). The two-electron Hookean atom is quite an
interesting problem as there exists a set of discrete values
of the harmonic coupling parameter for which analytic so-
lutions to the relative electron motion equation can be
found [5–12]. Because these solutions do not exhaust the
realm of all possible ones [13], the problem is only quasi-
solvable. The results for the Hookean two-electron atom,
however, cannot be readily generalized. On the one hand,
the generalization to larger number electrons has been
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proven to be difficult. For instance, for three electrons with
full Coulomb interaction confined in a harmonic well, only
approximate solutions may be obtained [14]. On the other
hand there are a number of processes, like molecular disso-
ciation, that cannot be addressed by the present harmonic
confining potential model.

Another model leading to solvable problems is based
on the inverse-square potential. This type of potential
already appears in the Fues-Kratzer model (for a re-
cent application, see Ref. [15]). However, the inverse
square potential is customarily associated with the name
of Calogero [16–19], or, when extensions are made to
encompass periodic boundary conditions, with that of
Calogero-Sutherland [20] in view of the exact treat-
ments presented by these authors of the N -particle
problem in one-dimension. As a recent application of
this model, we may mention the determination of the
particle-number fluctuation and its relation to correla-
tion strength [21]. For an exactly solvable variant of
the Calogero-Sutherland model, see reference [22]. Inverse
square potentials in three-dimensions are particularly im-
portant as they approach or are close to real potentials in
asymptotic limits. For this reason, they have been used
in the context of the Faddeev treatment of the three-
body system, for which exact solutions have been ob-
tained [23]. In addition, they have been used to approxi-
mate the real Coulomb potential through the first term
of the identity a/r = b/r2 + (ar − b)/r2 for the case
two-interacting electrons in a three-dimensional parabolic
quantum dot [24]. Analytic results for two-dimensional
N -particle systems interacting through 1/r2 potentials in
the presence of a magnetic field have been obtained by
Johnson and Quiroga [25]. A model of three electrons mov-
ing in a plane with Calogero interactions shows excellent
agreement with calculations using the exact interaction in
a parabolic quantum dot [26].

We present here an exact non–relativistic analytic
solution to the Hooke-Calogero model of the diatomic
molecules H2, which we take to be a four particle system
of the type M+M+m−m− (where M+ denotes a proton
and m− an electron) with harmonic interaction between
the M+m− pairs, a Coulombic interactions between the
electrons and an inverse square interaction between the
protons. Quite recently [27], we have examined a Hookean
model for H2, where, again, the M+m− interactions were
assumed to be harmonic, but where the remaining ones
were taken to be of the exact Coulomb type. Although in
that case there is a decoupling of the Schrödinger equation
into separate equations for the relative motion of electrons
and nuclei, exact analytic solutions cannot be obtained si-
multaneously for both equations due to the existence of
an indirect link between the harmonic coupling constants
appearing in both equations. Thus, a particular value of
the coupling constant that allows us to obtain an analytic
solution of the relative motion of electrons produces a cou-
pling constant for the relative motion of nuclei for which
there is no analytic solution. This difficulty is lifted in the
present case by resorting to the inverse square interac-
tion for the protons (i.e., by introducing a Calogero-type

potential). As a consequence, we are able to present, for
the first time, a fully non–relativistic analytic non-Born-
Oppenheimer solution for a model of the H2 molecule. We
can think of the present Hooke-Calogero model as sort of
a “poor man’s molecule”which can be used, in the same
way as the Hooke model for the helium atom has been
used [28,29], for the purposes of learning more about elec-
tron correlation effects.

In Section 2, we show how the Hamiltonian is decou-
pled. In Section 3, we present the — largely textbook —
solutions to the decoupled equations. For completeness,
however, we show that the usual solution to the three-
dimensional harmonic oscillator is also valid for the case
on non-integer angular momentum (centrifugal) quantum
numbers. In Section 4, we analyze the electron and nuclear
intracule densities. In Section 5, we compare the present
results with those of the Hookean H2 molecule. Finally, in
Section 6 we summarize the conclusions.

2 Separation of the Hamiltonian

For the Hooke-Calogero model of H2, described above,
the non–relativistic Hamiltonian operator (in units of � =
m = e = 1) is:

̂H = − 1
2M

∇2
RA

− 1
2M

∇2
RB

− 1
2
∇2

r1
− 1

2
∇2

r2

+
1

|r1 − r2| +
1

|RA − RB|2

+
ω2

2
(r1 − RA)2 +

ω2

2
(r1 − RB)2

+
ω2

2
(r2 − RA)2 +

ω2

2
(r2 − RB)2 (1)

where from an arbitrary reference system, RA and RB are
the position vectors for the protons (M+) A and B, and
r1 and r2, those of electrons (m−) 1 and 2, respectively.

The Schrödinger equation for this system

̂HΨ(RA,RB, r1, r2) = EΨ(RA,RB, r1, r2) (2)

is separable in terms of the relative coordinates of the
nuclei R, the relative coordinates of the electrons r, a col-
lective translation coordinate P and a pseudo-particle co-
ordinate Q which are related to the initial coordinates by:

R = RA − RB (3)
r = r1 − r2 (4)

[

P
Q

]

= R(θ)
[

(r1 + r2)/2√
M(RA + RB)/2

]

(5)

being R(θ) a unitary rotation of angle θ = tan−1
√
M .

Details of the derivation of the decoupling coordinates P
and Q are given in [27] (see also Ref. [30]). In terms of
these coordinates, the Hamiltonian decouples into:

̂H = ̂HR + ̂Hr + ̂HP + ̂HQ. (6)
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Rewriting the wave function as

Ψ(RA,RB, r1, r2) = ΨR(R)Ψr(r)ΨP(P)ΨQ(Q) (7)

we obtain through separation of variables the following set
of equations:

(

−∇2
r +

1
r

+
ω2

2
r2

)

Ψr(r) = ErΨr(r) (8)
(

− 1
M

∇2
R +

1
R2

+
ω2

2
R2

)

ΨR(R) = ERΨR(R) (9)

−1
2
∇2

PΨP(P) = EPΨP(P) (10)
(

− 1
2
∇2

Q +
4(M + 1)ω2

M
Q2

)

ΨQ(Q) = EQΨQ(Q) (11)

where the total energy, E, of equation (2) is,

E = Er + ER +
EQ + EP

2
. (12)

The solutions of the integro-differential equation corre-
sponding to the relative motion of the electrons, equa-
tion (8), have been found earlier for the Hookean He
atom [6,11,13] and for the Hookean H2 molecule [27] and,
those corresponding to the collective coordinates, equa-
tions (10, 11), have been discussed recently [27] within
the context of the Hookean H2. Indeed equations (8–11)
are very similar to those of the Hookean H2 (see Eqs. (5,
6, 12–14) of Ref. [27]) but they bear one very important
difference which stems from the power of relative coordi-
nate of the nuclei, R. For the Hookean H2, the interaction
between the two nuclei is Coulombic yielding R−1. Conse-
quently the Hamiltonians governing the relative motions
of both electrons and nuclei became formally equivalent,
with the sole difference of their masses and the effective
confinement strength parameter, W 2

T = ω2/2 for the elec-
trons and W 2

T = M × ω2/2 for the nuclei. However, this
has a big effect, for Taut [11] demonstrated that analytical
closed–form solutions for such a Hamiltonian exist only for
a discrete set, {A}, of values of the confinement strength
parameter WT . Therefore, for the Hookean H2 molecule
we obtain two separate sets of confinement parameters
for which the relative motion Hamiltonian has analytical
closed–form solutions, namely:

{ωR} = {ω | ω =
√

2/M WT |WT ∈ {A}} (13)

{ωr} = {ω | ω =
√

2WT |WT ∈ {A}}. (14)

We have found [27] that these two sets are disjoint:

{ωR} ∩ {ωr} = ∅. (15)

Consequently, for the Hokeean H2 molecule, given a con-
finement strength parameter ω, there do not exist analyt-
ical closed–form solutions for both nuclei and electrons si-
multaneously. If we chose analytical closed–form solutions
for either nuclei or electrons, then approximate solutions
for the other set of particles must be sought.

This constraint may be lifted by replacing the internu-
clear interaction potential. Thus, if instead of the Coulom-
bic potential, the inverse–square potential is set for the in-
teraction between the nuclei, as it has already been done
in equation (1), then the resulting equations (8–11) bear
full analytical closed–form solutions.

In the following section we elaborate the solution of
the Hooke-Calogero Hamiltonian for the relative motion
of the nuclei, equation (9).

3 Relative motion of nuclei

Let us rewrite equation (9) as:
(

−1
2
∇2

R +
M

2R2
+
W 2

R

2
R2

)

ΨR(R) = E′
RΨR(R) (16)

where WR ≡ √

M/2×ω and E′
R = M ER/2. Assume that

ω ∈ {ωr}. In this manner, we guarantee that the radial
equation of the relative motion of electrons has an analytic
solution and now we will seek an analytical solution for the
relative motion of the nuclei.

Equation (16) can be separated into a radial part and
an angular part by assuming that

ΨR(R) = ψR(R)YlR,mR(θR, ϕR). (17)

The equation for the radial function µR(R) ≡ RψR(R)
can be put into the form
(

−1
2
d2

dR2
+
lR(lR + 1)

2R2
+
M

2R2
+
W 2

R

2
R2

)

µR(R)=E′
RµR(R).

(18)
Since the second and third terms in the above equation
have the same R−2 dependence, we can bring them to-
gether by introducing the non-integer pseudo quantum
number (for a similar procedure, see the Appendix of
Ref. [24])

˜lR = lR + α (19)

satisfying the equation

˜lR(˜lR + 1) = lR(lR + 1) +M. (20)

The value of α that fulfills this condition is

α = −lR +
−1 ± √

(2lR + 1)2 + 4M
2

(21)

(let us comment here that the introduction of modified
quantum numbers in equations describing atomic levels
is indeed very old and forms the basis for what is called
quantum–defect theory [31–35]). The resulting equation
(

− 1
2
d2

dR2
+

˜lR(˜lR + 1)
2R2

+
W 2

R

2
R2

)

µR(R) = E′
RµR(R)

(22)
is that of a three-dimensional harmonic oscillator. How-
ever, equation (22) differs from the usual one in that ˜lR is
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not a quantum number, i.e., it is not an integer (in fact, it
is a function of the quantum number lR). Nevertheless, as
we show below, the usual solution to the three-dimensional
harmonic oscillator also applies to the case of non-integer
˜lR. To this effect, we consider the trial solution (where for
simplicity we drop the subindex R)

µl(R) = vl(R)R˜l+1 exp
(

−WR

2
R2

)

. (23)

This trial function yields the following differential equa-
tion for vl(R) [36]:

− 1
2
d2vl(R)
dR2

−
[ (˜l + 1)

R
−WRR

]dvl(R)
dR

+
[

− E′
R +WR

(

˜l +
3
2

)

]

vl(R) = 0 (24)

from which by letting z = WRR
2 andwl(z) ≡ vl(R) we ob-

tain Kummer’s equation (i.e., Eq. (13.1.1) of Abramowitz
and Stegun [37])

z
d2wl(z)
dz2

+ (b− z)
dwl(z)
dz

− awl(z) = 0 (25)

where b = (˜l + 3/2) and a = (˜l + 3/2)/2 − E′
R/(2WR).

The solution is clearly wl(z) = M(a, b, z). Now, since ac-
cording to equation (13.1.4) of reference [37], the confluent
hypergeometric function can be expressed as

M(a, b, z) =
Γ (b)
Γ (a)

ezza−b[1+O(|z|−1)]; Real(z) > 0 (26)

when z → ∞, integrability of M(a, b, z) requires that
Γ (a) = ∞. As the poles of Γ (a) occur at the values
−a = 0, 1, 2, . . ., it follows that

1
2

(

˜l +
3
2

)

− E′
R

2WR
= −υ; υ = 0, 1, 2, . . . (27)

The non-integer condition of ˜l is then transferred to the
energy expression:

ER =

√

2
M

[

(

˜lR +
3
2

)

+ 2υR

]

ω (28)

which is obtained after the replacements WR =
√

M/2ω
and E′

R = M ER/2 are made. In conclusion, the explicit
general form of the radial function appearing in equa-
tion (17) is:

ψυR,lR(R) = NυR,lRM(−υR,˜lR + 3/2,WRR
2)R˜lR

× exp

(

−
√

M

8
ωR2

)

(29)

(where, again, we have written explicitly the subindex R
to denote that these quantities pertain to the relative co-
ordinate R and to distinguish them from the quantum
numbers nr and lr relative to electronic motion).
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Fig. 1. Comparison between the wavefunctions of the elec-
tron relative motion (ψ1,0(r) and of the nuclear relative mo-
tion ψ0,0(R), Eq. (30)) for the Hooke-Calogero H2 molecule
with ω =

√
2/4 in equation (1).
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Fig. 2. Nuclear potential and the nuclear wavefunction ψ0,0(R)
according to equation (30). The horizontal line indicates the
value of the ER energy for the nuclear relative motion. Solid
lines correspond to the present Hooke-Calogero H2 molecule.
Dashed lines represent the nuclear potential, the nuclear
wavefunction and the nuclear relative motion energy for the
Hookean H2 molecule as calculated in reference [27].

Let us consider the particular case when nr = 1 and
lr = 0 for which at ω =

√
2/4 ∈ {ωr} the Hamiltonian

for relative motion of the electrons has a closed–shell an-
alytical solution [27]. Then, taking for the proton mass
the value of 1836 electron masses, it follows from equa-
tions (19) and (21), that when the quantum number
lR = 0 we obtain ˜lR 	 42.3515. Hence, when in addition
we set υR = 0, in view of the fact that M(0, b, R) = 1,
∀ (b, R), the wavefunction becomes:

ψ0,0(R) = N0,0R
42.3515 exp

(−5.356R2
)

. (30)

This is a highly peaked function of the relative nuclear
motion coordinate as shown in Figure 1. Using this wave-
function, we can calculate the value of R for which the
probability to find the nuclei is maximum, and we ob-
tain a value of Rmax = 2.012 Bohr. Recall that the corre-
sponding maximum probability internuclear distance for
Hookean H2 is attained [27] at R = 2.009 Bohr. This in-
dicates that in spite of the different interaction potentials
the resulting wavefunctions are similar. This is illustrated



X. Lopez et al.: Exact non-Born-Oppenheimer wave function for the Hooke-Calogero model of the H2 molecule 355

Table 1. Energy for the electronic and nuclear relative motions and their kinetic, repulsion and confinement components. For
completeness, the energies for the nuclear relative motion in the Hookean H2 case are also reported as calculated in reference [27].

Calc. type Total energy Energy components

kinetic repulsion confinement

Er Electron relative motion

1.250000 0.289418 0.447443 0.513139

ER Nuclear relative motion

Hooke-Calogero 0.511703 0.005868 0.249983 0.255851

Hookean H2 [27] 0.760132 0.005079 0.499982 0.255070

Quasiparticle harmonic motion

EQ 0.750204

in Figure 2 which shows the wavefunctions of the rela-
tive nuclear motion for both the Hooke and the Hooke-
Calogero models of H2.

4 Total wavefunction and total energy

Coordinate P describes the collective motion of a free par-
ticle. The internal energy is measured taking as a reference
this free-particle energy, namely, assuming that EP = 0.
Incidentally, this choice, in view of equation (10) reduces
ΨP to a constant will be subsumed into the normalization
constant. Thus, considering separately the radial and an-
gular coordinates, like in equation (17), of the remaining
wavefunctions of the product equation (7) we may rewrite
the total wavefunction as:

Ψ(RA,RB, r1, r2) = ψnr ,lr(r)ψυR,lR(R)ψυQ,lQ(Q)

× Ylr,mr (θr, ϕr)YlR,mR(θR, ϕR)YlQ,mQ(θQ, ϕQ). (31)

It follows, therefore, that the total wavefunction depends
on the coordinates of the relative electron and nuclear
motions, r and R, respectively, on the coordinate Q of the
quasi-particle motion and on six angles. In principle, it
is possible to transform these angles into the usual three
Euler angles describing the rotation of the system as a
whole plus three angles that describe the internal rota-
tions. This, of course, would allow us to define total quan-
tum numbers for the rotation. As evinced from the difficul-
ties one encounters in obtaining these quantum numbers
for the three-particle problem, one would expect that this
reduction is not trivial in the present case. For this rea-
son, we discuss the total solution disregarding all angular
motion. In other words, we take the lowest values of the
angular momentum quantum numbers in all these cases:
lr = 0, mr = 0, lR = 0, mR = 0, lQ = 0 and mQ = 0.
Moreover, we also take the lowest allowed values of the
quantum numbers nr = 1, υR = 0 and υQ = 0. The total
wavefunction for this case becomes:

Ψ(RA,RB, r1, r2) = N
(

1 +
r

2

)

R(−1+
√

1+4M)/2

× exp

(

− r2

8
−

√

M

8
R2 −

√

M + 1
4M

Q2

)

. (32)

The total energy, see equation (12), is

E = Er + ER +
EQ

2
(33)

as we have set EP = 0. For nr = 1 and lr = 0, the energy
of the relative electronic motion becomes

Er =
5
4
. (34)

For the relative nuclear motion the energy for υR = l̃R = 0
and ω =

√
2/4 is, in accordance with equations (21, 28):

ER =
1
2

√

4M + 1
4M

+
1√
4M

. (35)

For M = 1836 electron masses, ER = 0.511703 a.u. The
values of the kinetic, repulsion and confinement compo-
nents of Er and ER are given in Table 1. For completeness,
the values of the relative nuclear motion components for
the case of the Hookean H2 molecules are also included. Of
course, for the Hooke-Calogero and the Hookean model of
H2, both the relative electronic motion and the quasipar-
ticle motion (harmonic oscillator motion) are equal and
they only differ in the nuclear motion energy.

Finally, the energy for the three-dimensional harmonic
oscillator on the collective coordinate Q, for υQ = lQ = 0
and ω =

√
2/4 is:

EQ =
3
2

√

M + 1
M

. (36)

This completes all the terms of equation (33) and yields a
total energy of,

E =
10
4

(37)

for the infinite nuclear mass, M → ∞ approximation. Re-
call that for the Hookean H2 the corresponding total en-
ergy [27] is E = 11/4 and for the Hookean He atom [6],
E = 8/4. Observe that the total energy of the Hooke-
Calogero H2 model is smaller than that of the Hooke
model, because it bears less internuclear repulsion. Nat-
urally, Hookean He is the most stable because it has no
internuclear repulsion.
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Table 2. Moments of the electronic and nuclear intracule densities.

Electronic (x = r) Nuclear (x = R)

Hooke-Calogero Coulombic [40] Hooke-Calogero Hookean [27]

xmax 2.494 2.356 2.012 2.009

µ2
max 0.393 0.363 2.614 2.434

〈x−2〉 0.276 0.355 0.250 0.252

〈x−1〉 0.447 0.477 0.499 0.500

〈x0〉 1.000 1.000 1.000 1.000

〈x1〉 2.685 2.664 2.018 2.014

〈x2〉 8.210 8.398 4.094 4.081

σ =
√〈x2〉 − 〈x〉2 1.001 1.141 0.153 0.164

5 Electronic and nuclear intracule densities

In view of the decomposition of the wavefunction given
by equation (7) the only wavefunction that depends ex-
plicitly on the relative electronic coordinate is Ψr(r) =
ψr(r)/

√
4π. For this reason, the electronic intracule den-

sity is straightforwardly evaluated as:

Ie(r) = 〈Ψ | δ(r − r1 + r2) | Ψ〉 =
1
4π

|ψr(r)|2. (38)

The spherically averaged electronic intracule density is:

he(r) =
1
4π

∫

dΩrIe(r) (39)

and consequently, the electron–pair probability distribu-
tion is given by:

Pe(r) = 4πr2he(r) = r2|ψr(r)|2 = |µr(r)|2. (40)

Similarly, for the relative nuclear motion we have in the
present case

In(R) = 〈Ψ | δ
(

R − R1 + R2

2

)

| Ψ〉 =
1
4π

|ψR(R)|2

(41)
and, since the spherically averaged nuclear intracule den-
sity is defined as

hn(R) =
1
4π

∫

dΩRIn(R) (42)

the nucleus–pair probability distribution can be cast as:

Pn(R) = 4πR2hn(R) = R2|ψR(R)|2 = |µR(R)|2. (43)

In Table 2, we compare the momenta of both the electronic
and nuclear intracule densities for the Hooke, Hooke-
Calogero and Coulombic H2 and, in Figure 3, we present
graphs of the electron–pair and nucleus–pair probability
distributions.

6 Comparison with the Hookean model for H2

The Hookean model for H2, in contrast with the present
Hooke-Calogero model, adopts the true 1/R interaction

1 2 3 4 5 6

0.5

1

1.5

2

2.5

3

Fig. 3. Electron–pair (solid line) and nucleus–pair (dashed
line) probability distribution functions for the Hooke-Calogero
H2 molecule with ω =

√
2/4 in equation (1).

between nuclei. However, as seen elsewhere [27], this
choice of potential prevents us from truly decoupling the
electronic and nuclear motions (which remain entangled
through the connection of their respective harmonic cou-
pling constants). The present choice of the 1/R2 potential
allows us, on the other hand, to circumvent this prob-
lem. As a consequence, in this context, we are able to
generate both the exact analytic wavefunction given by
equation (32) and its associated energy, equation (33).

It is of interest, for this reason, to compare the present
exact analytic results with approximate analytic wave-
functions obtained for the Hooke model of H2. In this vein,
in Table 1 we have included values of the relative nuclear
motion components for the Hooke model of H2. Also, in
Table 2, we have included the momenta for the pair prob-
ability distributions of the latter model. In Figure 2 the
nuclear potentials and their corresponding wavefunctions
for both of these models are plotted. Finally, in Figure 4,
we compare the Hooke-Calogero and Hooke nucleus–pair
probability distributions.

It is seen in Table 1 that the effect of the inverse
square potential for the nuclear motion does not affect
significantly the kinetic and confinement energy compo-
nents of the Hooke-Calogero model with respect to those
of the Hookean model for H2. In fact, the main dif-
ference arises in the repulsion energy which is twice as
large for the Coulomb potential (0.4999982 Hartrees vs.
0.249983 Hartrees). However, in spite of this difference, as
it is seen in Table 2, both models yield practically the same
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Fig. 4. Nucleus–pair probability distribution functions for the
Hooke-Calogero H2 molecule (solid line) and for the Hookean
H2 molecule (dashed line), with ω =

√
2/4 in equation (1).

equilibrium distance (2.012 Bohr for the Hooke-Calogero
model vs. 2.009 Bohrs for the Hookean one).

One sees in Figure 2 that the shape of the Hooke-
Calogero potential is steeper at short values of the inter-
nuclear coordinate R. At large distances, both potentials
show a similar behavior. As a consequence, the nu-
clear wavefunctions are quite similar although the Hooke-
Calogero wavefunction appears to be slightly less disperse.
This behavior is clearly reflected in the smaller standard
deviation value of σ = 0.153 for the nuclear intracule den-
sity of the Hooke-Calogero model against σ = 0.164 for
the Hookean one. It is important to note, in addition, that
both these models lead to an extremely high localization of
the nuclei. This is an example of the phenomenon of crys-
tallization predicted by Wigner [38] in regimes dominated
by very high correlation. In contrast, the standard devia-
tion for the electronic intracule density is σ = 1.001. This
value denotes a substantial delocalization of the electrons,
even though the electrons are correlated through the func-
tion (1 + r/2) (where r is the interelectronic coordinate).

In Figure 4 it is seen that the nucleus–pair probability
distributions for both these models are almost coincident.
This result, which is somewhat striking, has important
practical consequences as it shows that the very compli-
cated function [27] describing the nucleus–pair probability
in the Hookean model of H2 can be closely approximated
by the much simpler analytical closed–form, equation (43),
of the Hooke-Calogero model.

7 The Coulomb hole

The electron correlation [39] in general and the Coulomb
hole in particular is one of the so–called holy grails of the
electronic structure theory [40]. Having obtained an ex-
act analytical solution for the Hooke-Calogero model of
the H2 molecule, one might think of using it to develop
better strategies to deal with the electron correlation ef-
fects. However, this is pending on how similar or different
are the real Coulombic Coulomb hole and the modeled
Hooke-Calogero Coulomb hole.

Recall that the Coulomb is defined [41] as the differ-
ence between the exact and Hartree–Fock electron–pair

Fig. 5. Upper panel: Coulomb holes for the Hooke-Calogero
model (dashed line) and the Coulombic (solid line) for the
H2 molecule at the internuclear distance R = 2.012 Bohr, as
a function of the interelectronic distance. Lower panel: exact
(solid line) and Hartree–Fock (dashed line) Coulombic minus
Hooke-Calogero electron–pair probability distributions for the
H2 molecule at the internuclear distance R = 2.012 Bohr, as a
function of the interelectronic distance.

probability distributions, namely, for the electrons:

∆Pe(r) = P ex
e (r) − PHF

e (r) (44)

where P ex
e is given by equation (40). The Hartree–Fock

electron–pair probability distributions, PHF
e (r), for the

Hooke-Calogero Hamiltonian of equation (1), has been
calculated expanding the Hartree–Fock singlet ground
state wavefunction in an orthonormal basis of Carte-
sian Gaussian. The resulting self–consistent problem has
been solved iteratively. The calculated electron correlation
energy of –33.841495 mHartree for the Hooke-Calogero
model compares well with that of the Coulombic real H2

system [40], –37.643987 mHartree. Notice that for He,
the Hookean and Coulombic electron correlation energies
are –38.438873 mHartree and –42.044000 mHartree, re-
spectively [42]. The difference between the Hookean and
Coulombic systems is, in both cases, ∼4 mHartree.

The upper panel in Figure 5 shows the Coulomb hole
for the Hooke-Calogero model of the H2 molecule calcu-
lated at a internuclear distance of 2.012 Bohr and the cor-
responding Coulombic Coulomb hole at the same inter-
nuclear distance. The similarity between both Coulomb
holes is remarkable and supports the assertion of Kestner
and Sinanoglu [5] that correlation effects are rather in-
sensitive to the nature of the external confining field of
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the electrons. This point has also been recently made by
O’Neil and Gill [42] in their analysis of the electron cor-
relation for the Hookean He atom. However, as shown
in the lower panel of Figure 5, this does not mean that
the Coulombic and Hooke-Calogero electron–pair distri-
butions are similar, but rather it turns out that elec-
tron correlation effects operate similarly in both Coulom-
bic and Hooke-Calogero H2 systems. Consequently, the
Hooke-Calogero H2 molecule might represent a convenient
“poor man’s”molecular system for modeling electron cor-
relations effects occurring in real Coulombic systems. The
latter point is further supported by the nice agreement be-
tween the electronic properties of both systems, as shown
in Table 2.

8 Conclusions

An important and as yet unsolved problem in molecular
quantum theory is the proper treatment of molecules in
a non-Born-Oppenheimer framework. We present in this
work an exact analytic solution based, precisely, on a non-
Born-Oppenheimer treatment of a model of the hydrogen
diatomic molecule. This model, called the Hooke-Calogero
model introduces a harmonic interaction between elec-
trons and protons and an inverse quadratic interaction
between protons. This exact analytic solution is displayed
in equation (32).

An important aspect of this solution is that it yields
a highly peaked nuclear intracule distribution. Thus, in
a natural way, the present non-Born-Oppenheimer treat-
ment predicts a very high localization of the nuclei. In
this respect, it is worthwhile to notice that the relative
nuclear wavefunction reflects the presence of substantial
correlation between the nuclei. This is manifested by the
large power to which the internuclear coordinate is raised
in equation (30). As discussed elsewhere [27], this strong
correlation regime affecting the nuclear relative motion
is a manifestation of Wigner crystallization. Quite to the
contrary, the electrons, which are subjected to the simpler
correlation function (1 + r/2) show considerable delocal-
ization

Comparison of the present model with the Hooke
model for H2, shows that in spite of the difference in
the potential there is a substantial coincidence between
the nucleus–pair probability distributions. Moreover, both
models yield practically the same equilibrium distance.
Let us remark that in contrast to the present model, for
the Hookean model of H2 it is not possible to obtain an
exact analytic wavefunction.

Additionally, we have shown by explicit calculation of
the electronic intracule densities and their associated mo-
menta for the Hooke-Calogero model of H2, that the elec-
tron dynamics is rather insensitive to the nature of the
confining external potential, being it harmonic, like in the
Hooke-Calogero model, or Coulombic. Even more, elec-
tron correlation appears to operate very similarly in both
systems, as indicated by the remarkable similarity of the
Coulomb holes of both systems.

The present exact analytic solution for the Hooke-
Calogero model of H2 may be useful in efforts to treat
in a quantum mechanical manner the motion of nuclei.
The reason is that the analytic expression given by equa-
tion (32) condenses in a very simple form the important
quantum effects determining this motion. In turn, this
opens the gate for exploring very compact approximations
to describe the exact nucleus–pair probability in the real
H2 molecule. Such analytic approximations will allow us to
derive density functionals for the nuclei in much the same
manner as was done for electrons in a Hookean atom [43].
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